
Lemma 11 and Curvature 
 

 

Moreover, in all of these we have supposed the angle of contact to be neither infinitely greater 

than the angles of contact which circles contain with their tangents, nor infinitely less than the 

same; that is, the curvature at point A to be neither infinitely small nor infinitely large, or the 

interval AJ to be of a finite magnitude. (Newton, 31) 

Immediately after his Lemmas, Newton makes some striking claims about curvature: 

1. These Lemmas only work for finite curves 

2. Infinite curves have an “angle of contact” either infinitely greater or infinitely less 

than that of a circle 

3. “The interval AJ” will not have a finite magnitude. 

These are striking and tremendously important claims for which Newton offers no 

argument, but they can be easily demonstrated using a general understanding of Cartesian 

curves using concept of a limit. 

First, we must show how to find AJ for a given function: 

Taking the diagram from Lemma 11, let the 

tangent and GB both be extended until they 

meet at C, and draw BD perpendicular to the 

tangent. 

Then ADB, BDC and GAC will all be similar 

triangles. 

Let AD be called “x” and BD be called “y”, just as 

they would be if this curve was plotted on a 

Cartesian coordinate graph if AD was a line on 

the X axis with A at the origin.  

∴ DC : y :: y : x, 

And GA : x + DC :: x : y. 

Figure 1 
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Expressing these as the equivalent equations, 

𝐷𝐶

𝑦
=

𝑦

𝑋
  

and 
𝐺𝐴

𝑥+𝐷𝐶
=

𝑥

𝑦
. 

∴ 𝐷𝐶 =  
𝑦2

𝑥
  

and 𝐺𝐴 =  
𝑥2

𝑦
+

𝐷𝐶𝑥

𝑦
 

∴ 𝐺𝐴 =  
𝑥2

𝑦
+

(
𝑦2

𝑥
)(𝑥)

𝑦
=  

𝑥2

𝑦
+

𝑥𝑦2

𝑥𝑦
=  

𝑥2

𝑦
+ 𝑦. 

But 𝐴𝐽 =  lim
𝑥→0

𝐴𝐺 

∴ 𝐴𝐽 =  lim
𝑥→0

𝑥2

𝑦
+ 𝑦 = lim

𝑥→0

𝑥2

𝑦
+ lim

𝑥→0
𝑦   

But x is tangent to the curve at the origin, so as it goes to zero, so does y. 

∴ 𝐴𝐽 = lim
𝑥→0

𝑥2

𝑦
. 

QEI 

From this it is clear that for any function of x to have a finite AJ at the point where it 

is tangent to the x axis, the whole function must have a finite limit of 
𝑥2

𝑦
 as x goes to zero. For 

instance, the function 𝑦 = 𝑥2  might be given. In this case, 𝐴𝐽 =  lim
𝑥→0

𝑥2

𝑥2 = 1 . Since the 𝑥2 

terms cancel out, the function is the same everywhere and we are given a finite limit. If 

Descartes’ canonical equations for the several conic sections were used, it could be proven 

using this method that they all will have a finite AJ at their vertices. This proof applies directly 

when the x axis is tangent to the conic section, and since any point can be one of their vertices, 

it can also be proven that every conic section has a finite AJ at every point. If, on the other 

hand, we were given that 𝑦 = 𝑥4, then 𝐴𝐽 =  lim
𝑥→0

𝑥2

𝑥4
= lim

𝑥→0
𝑥−2 = ∞; or, if 𝑦 = 𝑥

2
3, then 𝐴𝐽 =

lim
𝑥→0

𝑥2

𝑥
2
3

= lim
𝑥→0

𝑥11
3 = 0. This gives us an example of a function with an infinite AJ (𝑦 = 𝑥4), a 

Figure 2 
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function with a finite AJ (𝑦 = 𝑥2), and a function with a nil AJ (𝑦 = 𝑥  ). Now let’s put this 

together into some general rules: 

When dividing exponents with the same root, the exponent in the denominator is 

subtracted from the exponent in the numerator. When calculating AJ, our numerator will 

always be x2, and the denominator will always be the power of x that is equal to y (multiplied 

by a variable if there are any). From this it follows that any positive power of x goes to zero 

as x goes to zero, and any negative power of x goes to infinity as x goes to zero. Thus, if we 

are given a constant multiplied by any power of x, AJ will always be inversely as that constant 

if that power of x is 2; it will be infinite if the power of x is greater than 2; and AJ will be nil if 

the power of x is less than 2.  

In other words: if 𝑦 = 𝑘𝑥𝑛>2, then 𝐴𝐽 = ∞ 

If 𝑦 = 𝑘𝑥𝑛<2, then 𝐴𝐽 = 0. 

If 𝑦 = 𝑘𝑥2, then 𝐴𝐽 =  
1

𝑘
. 

This gives us an answer for why it is that AJ does not have a finite value in any of the 
curves that Newton mentioned, and why every conic section does have a finite AJ at every 
point.  

However, to proceed with our discussion of curvature, we must first set forth two 
postulates. 

Two things must be postulated to do this: 

1. Any curve with a greater AJ is less curved at A; any curve with a lesser AJ is more 

curved at A; any curves with equal AJ’s have equal curvature at A. 

2. Curvature is the rate of change of the angle made by the tangent-line with any fixed 

line over a certain circumferential distance. 

For instance, since every circle has a tangent line that makes one full rotation at a constant 

rate over the course of the whole circumference, the angle between that tangent and any 

fixed line will change by 360° over the course of the whole rotation, the curvature of any 

point on any circle will always be inversely proportional to its circumference. 
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And since every semi-circle is similar, the curvature of any circle is also inversely 

proportional to its diameter. 

The diameter of every circle is always 

equal to its AJ, since the axis perpendicular 

to the tangent is always the diameter and 

the angle in a semicircle is always right. 

∴ The curvature of every circle is inversely 

proportional to its AJ, which is its 

diameter. 

However, whenever two curves have an 

equal AJ, they have equal curvature, so 

whenever any curve has an AJ equal to the 

diameter of a circle, its curve is the same as the curve of that circle. 

Since the curvature of any circle is inversely proportional to its AJ, it follows that the 

curvature at any vertex “A” is always inversely proportional to its AJ. 

It has already been shown that every function of x that is raised to a greater power than 2 

will have an infinite AJ and that every function of x to a lesser power of 2 has a nil AJ. 

Therefore, at the vertex of a function whose power is greater than 2, there will be infinitely 

little curvature, and at the vertex of any function whose power is less than 2 there will be 

infinitely great curvature.  

Figure 3 

Graphs taken from www.desmos.com 

𝑦 = 𝑥
3
2 𝑦 = 𝑥3 𝑦 = 𝑥4 
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From left to right these show the graph of y to the sesquiplicate ratio (infinite curvature), the 

triplicate ratio (no curvature) and the quadruplicate ratio 

(no curvature). 

Keeping these graphs in mind, let us now turn to a 

more theoretical consideration of what would be required 

for the limit of AG to be finite. 

Given AD as a straight line (Figure 4), AG is always 

perpendicular to AD and DB is always parallel to AG. Since 

these lines will not cut each other before coinciding with each other, their ultimate length 

(AJ) will be infinite. Since the curvature is inversely proportional to AJ, the curvature is 1 ∞⁄ . 

If on the other hand we are given two straight lines making 

an angle at the origin (Figure 5), AG is cut away in a constant 

proportion with AD. When AD goes to zero AG will go to zero. This 

causes AJ to be nil. This is because there is an infinite number of 

tangents to an angle This is what makes it have infinitely great 

curvature, as the tangent rotates a finite degree at a point. For any 

circle to have curvature equal to an angle, that circle would need to 

have a diameter of infinitely small length.  

This shows the reason that the three graphs earlier used as examples do not have 

finite curvature, but why say that they are curved at all? The answer is simple: straight lines 

are drawn between two points, but pick any two points on the 𝑥4 graph, join a line between 

them, and that line will not coincide with the graph. Similarly put, there is an inclination 

between the 𝑥4 curve and the x axis, since they coincide only at the origin. Since there is an 

inclination there is an angle, but this angle is clearly not a rectelineal angle, for then a 

Figure 4 

Figure 5 
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rectelineal angle would be smaller than a horn angle. This too must be a horn angle then, but 

where there is a horn angle there must be a curve. 

 

 

Figure 6 

 

 


